INRUSH CURRENT LIMITERS

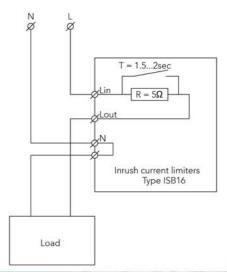
INTRODUCTION

Inrush current limiters are used to prevent peak currents caused during switching of inductive or capacitive loads. By using the inrush current limiter the unnecessary activation of a protective breaker can be prevented.

some specific types of load are known for causing these high inrush currents:

- Power switching modules (PSM)
- Transformers

INRUSH CURRENT LIMITERS


Inrush current limiter type	ISB-8	ISB-16
Voltage	110-230V	110-230V
Max. load AC1	1840VA	3680VA
Nominal current	8A	16A
Max. current	25A	50A
Time delay	1,52 sec.	1,52 sec.
Consumption	<450mW	<450mW
Dimensions (hxwxd in mm)	95 x 36 x 60 mm	95 x 36 x 60 mm
Enclosure	Synthetic PA UL94-V0	Synthetic PA UL94-V0
Protection degree	IP20	IP20
Mechanical strength	IK07	IK07
Connection	0,2 - 4,0 mm ²	0,2 - 4,0 mm ²
Standards	IEC61010-1:2010/C1:2011	IEC61010-1:2010/C1:2011
Mounting	DIN rail TS 35	DIN rail TS 35

Characteristics:

- Custom made
- Different designs possible
- CE certified (with certificate)
- Diffferent standard types available

Caution! Due to the incorporated over temperature protection the inrush current limiter requires a certain cooling down period between the switching cycles. The time required to cool down should be approximately 1 minute after a switching cycle.

Wesemann specialises in the design and manufacturing of power supplies and integrated transformer systems. Wesemann is ISO9001:2008 certified by Lloyd's Register Quality Assurance.

Droogbloem 31 NL-3068 AW Rotterdam The Netherlands Tel. +31 (0)10 286 20 00 Fax. +31 (0)10 286 20 05

sales@wesemann.eu www.wesemann.eu

